Your browser doesn't support javascript.
loading
Nonfragile Impulsive State Estimation for Complex Networks With Markovian Switching Topologies Subject to Limited Bit Rate Constraints.
Article en En | MEDLINE | ID: mdl-39231058
ABSTRACT
In this article, we consider the impulsive estimation problem for a specific category of discrete-time complex networks (CNs) characterized by Markovian switching topologies. The measurement outputs of the underlying CNs, transmitted to the observer over wireless networks, are subject to bit rate constraints. To effectively reduce the estimation error and enhance estimation performance, a mode-dependent impulsive observer is proposed that employs the impulse mechanism. The application of stochastic analysis techniques leads to the derivation of a sufficient condition for ensuring the mean-square boundedness of the estimation error dynamics. The upper bound of the error is then analyzed by iteratively exploring the Lyapunov relation at both impulsive and non-impulsive instants. Moreover, an optimization algorithm is presented for handling the bit rate allocation, which is coupled with the design of desired observer gains using the linear matrix inequality (LMI) approach. Within this theoretical framework, the relationship between the mean-square estimation performance and the bit rate allocation protocol is further elucidated. Finally, a simulation example is provided to demonstrate the validity and effectiveness of the proposed impulsive estimation approach.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article