Your browser doesn't support javascript.
loading
Highly-Efficient Selection of Aptamers for Quantitative Fluorescence Detecting Multiple IAV Subtypes.
Wang, Meng; Chen, Jianjun; Zhang, Zhi-Ling.
  • Wang M; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China.
  • Chen J; Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.
  • Zhang ZL; University of Chinese Academy of Sciences, Beijing 100049, China.
Anal Chem ; 2024 Sep 11.
Article en En | MEDLINE | ID: mdl-39259665
ABSTRACT
Influenza A virus (IAV) can cause infectious respiratory diseases in humans and animals. IAVs mutate rapidly through antigenic drift and shift, resulting in the emergence of numerous IAV subtypes and significant challenges for IAV detection. Therefore, achieving the simultaneous detection of multiple IAVs is crucial. In this work, three specific aptamers targeting the hemagglutination (HA) protein of the influenza A H5N1, H7N9, and H9N2 viruses were screened using a multichannel magnetic microfluidic chip. The aptamers exhibit nanomolar affinity and excellent specificity for the HA protein of H5N1, H7N9, and H9N2 viruses. Furthermore, three specific aptamers were truncated and labeled with different fluorescence markers to realize fluorescence quantitative detection of influenza A H5N1, H7N9, and H9N2 viruses through an aptamer sandwich assay in 1 h. The limit of detection (LOD) of the developed method is 0.38 TCID50/mL for the H5N1 virus, 0.75 TCID50/mL for the H7N9 virus, and 1.14 TCID50/mL for the H9N2 virus. The detection method has excellent specificity, strong anti-interference ability, and good reproducibility. This work provides a sensitive quantitative detection method for the H5N1, H7N9, and H9N2 viruses, enabling quantitative fluorescence detection for multiple IAV subtypes.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article