Your browser doesn't support javascript.
loading
Silica Nanoparticles from Melon Seed Husk Abrogated Binary Metal(loid) Mediated Cerebellar Dysfunction by Attenuation of Oxido-inflammatory Response and Upregulation of Neurotrophic Factors in Male Albino Rats.
Anyachor, Chidinma P; Orish, Chinna N; Ezejiofor, Anthonet N; Cirovic, Ana; Cirovic, Aleksandar; Dooka, Baridoo Donatus; Ezealisiji, Kenneth M; Noundou, Xavier Siwe; Orisakwe, Orish E.
  • Anyachor CP; African Centre of Excellence for Public Health and Toxicological Research (ACE­PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
  • Orish CN; Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria. chinna.orish@uniport.edu.ng.
  • Ezejiofor AN; African Centre of Excellence for Public Health and Toxicological Research (ACE­PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
  • Cirovic A; Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia.
  • Cirovic A; Faculty of Medicine, Institute of Anatomy, University of Belgrade, Belgrade, Serbia.
  • Dooka BD; African Centre of Excellence for Public Health and Toxicological Research (ACE­PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria.
  • Ezealisiji KM; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Port Harcourt, PMB, Choba, Port Harcourt, 5323, Nigeria.
  • Noundou XS; Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, MEDUNSA, Box 218, 0204, Pretoria, South Africa.
  • Orisakwe OE; African Centre of Excellence for Public Health and Toxicological Research (ACE­PUTOR), University of Port Harcourt, PMB, Port Harcourt, Choba, 5323, Nigeria. orishebere@gmail.com.
Cerebellum ; 2024 Sep 27.
Article en En | MEDLINE | ID: mdl-39331240
ABSTRACT
Silica nanoparticles (SiNPs) have been touted for their role in the management of non-communicable diseases. Their neuroprotective benefits against heavy metal-induced neurotoxicity remain largely unexplored. This is a comparative evaluation of the oxido-inflammatory and neurotrophic effects of Ni, Al, and Ni/Al mixture on the cerebellum of male albino rats with or without treatment with SiNPs generated from melon seed husk. The study complied with the ARRIVE guidelines for reporting in vivo experiments. A total of 91, 7-9 week-old weight-matched male Sprague rats (to avoid sex bias) were randomly divided into 13 different dosing groups where Group 1 served as the control. Other groups received 0.2 mg/kg Ni, 1 mg/kg Al, and 0.2 mg/kg Ni + 1 mg/kg Al mixture with or without different doses of SiNP for 90 days. Rotarod performance was carried out. Oxidative stress markers, Ni, Al, Ca, Fe, Mg, neurotrophic factors, amyloid beta (Aß-42), cyclooxygenase-2 (COX-2), and acetylcholinesterase (AChE) were determined in the cerebellum. SiNPs from melon seed husk caused a significant decrease in Aß-42 level and activities of AChE and COX-2 and a significant increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mediated by Ni, Al, and Ni/Al mixture exposure in rats. Neurotoxicity of the Ni/Al mixture is via heightened neuronal lipoperoxidative damage, decreased Mg, and increased Fe, and co-administration of SiNPs from melon seed husk with the Ni/Al mixture attenuated some of these biochemical changes in the cerebellum.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2024 Tipo del documento: Article