The role of metallothionein, glutathione, glutathione S-transferases and DNA repair in resistance to platinum drugs in a series of L1210 cell lines made resistant to anticancer platinum agents.
Biochem Pharmacol
; 45(1): 253-6, 1993 Jan 07.
Article
en En
| MEDLINE
| ID: mdl-8424817
The glutathione contents, glutathione S-transferase activities and metallothionein contents have been measured in a series of L1210 cell lines which show decreased sensitivities to platinum drugs. Resistance to cisplatinum cisDDP, cis-diamminedichloroplatinum (II)] and chip [ioproplatin, cisdichloro-bis-isopropylamine-trans dihydroxy platinum IV] was found to correlate with glutathione levels but not metallothionein. Conversely, resistance to tetraplatin was found to be correlated with metallothionein but not glutathione levels. However, depletion of glutathione by buthionine 1-sulphoximine sensitizes all cell lines to the effects of cisDDP, chip and tetraplatin [d,1-trans-tetrachloro-1,2-diamino-cyclohexanplatinum (IV)]. Inhibition of DNA repair by aphidicholin or caffeine also partially restored sensitivity to these platinum drugs. These results indicate the complexity of the changes occurring upon the development of drug resistance.
Search on Google
Banco de datos:
MEDLINE
Asunto principal:
Compuestos Organoplatinos
/
Cisplatino
/
Reparación del ADN
/
Glutatión
/
Glutatión Transferasa
/
Metalotioneína
Límite:
Animals
Idioma:
En
Año:
1993
Tipo del documento:
Article