Solution conformation of methylated macrolide antibiotics roxithromycin and erythromycin using NMR and molecular modelling. Ribosome-bound conformation determined by TRNOE and formation of cytochrome P450-metabolite complex.
Int J Biol Macromol
; 22(2): 103-27, 1998 Apr.
Article
en En
| MEDLINE
| ID: mdl-9585888
Conformational study of methylated derivatives of macrolide antibiotics roxithromycin (6-OMe-roxithromycin and 6,11-OMe-roxithromycin) has been achieved by NMR in solution and molecular dynamics (MD) simulations and compared to 6-OMe-erythromycin (clarithromycin). A complete conformational study by NMR has been led by determination of homonuclear coupling constants and NOEs. Heteronuclear 1H-13C coupling constants were also measured to investigate the orientation of the sugar moieties with respect to the erythronolide. MD simulations were performed using the crystallographic coordinates as the starting conformation. For each compound, experimental results were compared to calculated conformations in order to identify eventual conformational equilibrium in solution. It is shown that the effect of the methylation is opposite for roxithromycin compared to erythromycin especially on motional properties as the roxithromycin derivatives gain in mobility while the erythromycin derivatives behaves as a more restrained molecule. The study of macrolide-ribosome interactions has been investigated using transferred NOESY 1H NMR experiments and the conformations weakly bound to bacterial ribosomes were determined. Biological interactions of these compounds with membranar liver protein cytochrome P450 was also discussed with regard to their structural properties.
Search on Google
Banco de datos:
MEDLINE
Asunto principal:
Ribosomas
/
Eritromicina
/
Roxitromicina
/
Sistema Enzimático del Citocromo P-450
/
Antibacterianos
Idioma:
En
Año:
1998
Tipo del documento:
Article