Your browser doesn't support javascript.
loading
Spatially regulated SpEts4 transcription factor activity along the sea urchin embryo animal-vegetal axis.
Wei, Z; Angerer, L M; Angerer, R C.
Afiliação
  • Wei Z; Department of Biology, University of Rochester, Rochester, NY 14627, USA. rangerer@rca.biology.rochester.edu
Development ; 126(8): 1729-37, 1999 Apr.
Article em En | MEDLINE | ID: mdl-10079234
Because the transcription of the SpHE gene is regulated cell-autonomously and asymmetrically along the maternally determined animal-vegetal axis of the very early sea urchin embryo, its regulators provide an excellent entry point for investigating the mechanism(s) that establishes this initial polarity. Previous studies support a model in which spatial regulation of SpHE transcription relies on multiple nonvegetal positive transcription factor activities (Wei, Z., Angerer, L. M. and Angerer, R. C. (1997) Dev. Biol. 187, 71-78) and a yeast one-hybrid screen has identified one, SpEts4, which binds with high specificity to a cis element in the SpHE regulatory region and confers positive activation of SpHE promoter transgenes (Wei, Z., Angerer, R. C. and Angerer, L. M. (1999) Mol. Cell. Biol. 19, 1271-1278). Here we demonstrate that SpEts4 can bind to the regulatory region of the endogenous SpHE gene because a dominant repressor, created by fusing SpEts4 DNA binding and Drosophila engrailed repression domains, suppresses its transcription. The pattern of expression of the SpEts4 gene is consistent with a role in regulating SpHE transcription in the nonvegetal region of the embryo during late cleavage/early blastula stages. Although maternal transcripts are uniformly distributed in the egg and early cleaving embryo, they rapidly turn over and are replaced by zygotic transcripts that accumulate in a pattern congruent with SpHE transcription. In addition, in vivo functional tests show that the SpEts4 cis element confers nonvegetal transcription of a beta-galactosidase reporter gene containing the SpHE basal promoter, and provide strong evidence that the activity of this transcription factor is an integral component of the nonvegetal transcriptional regulatory apparatus, which is proximal to, or part of, the mechanism that establishes the animal-vegetal axis of the sea urchin embryo.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Ouriços-do-Mar / Fatores de Transcrição / Metaloendopeptidases / Proteínas Proto-Oncogênicas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 1999 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Proteínas Repressoras / Ouriços-do-Mar / Fatores de Transcrição / Metaloendopeptidases / Proteínas Proto-Oncogênicas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 1999 Tipo de documento: Article