Your browser doesn't support javascript.
loading
Miniaturized metalloproteins: application to iron-sulfur proteins.
Lombardi, A; Marasco, D; Maglio, O; Di Costanzo, L; Nastri, F; Pavone, V.
Afiliação
  • Lombardi A; Department of Chemistry, University of Napoli Federico II, Via Mezzocannone 4, I-80134 Napoli, Italy.
Proc Natl Acad Sci U S A ; 97(22): 11922-7, 2000 Oct 24.
Article em En | MEDLINE | ID: mdl-11050226
ABSTRACT
The miniaturization process applied to rubredoxins generated a class of peptide-based metalloprotein models, named METP (miniaturized electron transfer protein). The crystal structure of Desulfovibrio vulgaris rubredoxin was selected as a template for the construction of a tetrahedral (S(gamma)-Cys)(4) iron-binding site. Analysis of the structure showed that a sphere of 17 A in diameter, centered on the metal, circumscribes two unconnected approximately C(2) symmetry related beta-hairpins, each containing the -Cys-(Aaa)(2)-Cys- sequence. These observations provided a starting point for the design of an undecapeptide, which self assembles in the presence of tetrahedrally coordinating metal ions. The METP peptide was synthesized in good yield by standard methodologies. Successful assembly of the METP peptide with Co(II), Zn(II), Fe(II/III), in the expected 21 stoichiometry, was proven by UV-visible and circular dichroism spectroscopies. UV-visible analysis of the metal complexes indicated the four Cys ligands tetrahedrally arrange around the metal ion, as designed. Circular dichroism measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. NMR characterization of the Zn(II)-METP complex fully supported the structure of the designed model. These results prove that METP reproduces the main features of rubredoxin.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Ferro-Enxofre / Metaloproteínas Idioma: En Ano de publicação: 2000 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Ferro-Enxofre / Metaloproteínas Idioma: En Ano de publicação: 2000 Tipo de documento: Article