Your browser doesn't support javascript.
loading
Dissolution Kinetics, Selective Leaching, and Interfacial Reactions of a Bioglass Coating Enriched in Alumina.
Jallot E; Benhayoune H; Kilian L; Irigaray JL; Barbotteau Y; Balossier G; Bonhomme P.
Afiliação
  • Jallot E; Laboratoire de Microscopie Electronique, 21 rue Clément Ader, Reims Cedex 02, 51685, France
J Colloid Interface Sci ; 233(1): 83-90, 2001 Jan 01.
Article em En | MEDLINE | ID: mdl-11112309
Bioglass coatings are interesting for developing a direct bond between prostheses and bone. But the high solubility of these materials limits their application. The addition of alumina can be used to control their solubility, but may inhibit the bonding mechanisms. In this paper, we study a bioglass in the SiO(2)-Na(2)O-CaO-P(2)O(5)-K(2)O-Al(2)O(3)-MgO system. After delays of implantation from 2 to 12 months, the bioglass/bone interface is characterized by energy-dispersive X-ray spectroscopy coupled with scanning transmission electron microscopy. Bioglass dissolution can be decomposed into three steps with selective leaching. Results show that, at 2 months after implantation, the bioglass is composed of Al, Si, Ca, and P. Alumina addition increases the coating stability without inhibiting the bonding process. Complex physicochemical reactions take place at the bioglass periphery. The coating bonds to bone through a Ca-P layer on top of a pure Si-rich layer. These phenomena are associated with bioactivity properties, which occur for up to 6 months. After 12 months, the bioglass is composed of silicon. Copyright 2001 Academic Press.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2001 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2001 Tipo de documento: Article