Your browser doesn't support javascript.
loading
Lethality of glnD null mutations in Azotobacter vinelandii is suppressible by prevention of glutamine synthetase adenylylation.
Colnaghi, Rita; Rudnick, Paul; He, Luhong; Green, Andrew; Yan, Dalai; Larson, Ethan; Kennedy, Christina.
Afiliação
  • Colnaghi R; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
  • Rudnick P; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
  • He L; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
  • Green A; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
  • Yan D; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
  • Larson E; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
  • Kennedy C; Department of Plant Pathology, College of Agriculture, PO Box 210036, The University of Arizona, Tucson, AZ 85721, USA1.
Microbiology (Reading) ; 147(Pt 5): 1267-1276, 2001 May.
Article em En | MEDLINE | ID: mdl-11320130
ABSTRACT
GlnD is a pivotal protein in sensing intracellular levels of fixed nitrogen and has been best studied in enteric bacteria, where it reversibly uridylylates two related proteins, PII and GlnK. The uridylylation state of these proteins determines the activities of glutamine synthetase (GS) and NtrC. Results presented here demonstrate that glnD is an essential gene in Azotobacter vinelandii. Null glnD mutations were introduced into the A. vinelandii genome, but none could be stably maintained unless a second mutation was present that resulted in unregulated activity of GS. One mutation, gln-71, occurred spontaneously to give strain MV71, which failed to uridylylate the GlnK protein. The second, created by design, was glnAY407F (MV75), altering the adenylylation site of GS. The gln-71 mutation is probably located in glnE, encoding adenylyltransferase, because introducing the Escherichia coli glnE gene into MV72, a glnD(+) derivative of MV71, restored the regulation of GS activity. GlnK-UMP is therefore apparently required for GS to be sufficiently deadenylylated in A. vinelandii for growth to occur. The DeltaglnD GS(c) isolates were Nif(-), which could be corrected by introducing a nifL mutation, confirming a role for GlnD in mediating nif gene regulation via some aspect of the NifL/NifA interaction. MV71 was unexpectedly NtrC(+), suggesting that A. vinelandii NtrC activity might be regulated differently than in enteric organisms.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adenina / Transativadores / Azotobacter vinelandii / Glutamato-Amônia Ligase / Nucleotidiltransferases Idioma: En Ano de publicação: 2001 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Adenina / Transativadores / Azotobacter vinelandii / Glutamato-Amônia Ligase / Nucleotidiltransferases Idioma: En Ano de publicação: 2001 Tipo de documento: Article