The internal mechanics of the intervertebral disc under cyclic loading.
J Biomech
; 35(9): 1263-71, 2002 Sep.
Article
em En
| MEDLINE
| ID: mdl-12163315
The mechanics of the intervertebral disc (IVD) under cyclic loading are investigated via a one-dimensional poroelastic model and experiment. The poroelastic model, based on that of Biot (J. Appl. Phys. 12 (1941) 155; J. Appl. Mech. 23 (1956) 91), includes a power-law relation between porosity and permeability, and a linear relation between the osmotic potential and solidity. The model was fitted to experimental data of the unconfined IVD undergoing 5 cyclic loads of 20 min compression by an applied stress of 1MPa, followed by 40 min expansion. To obtain a good agreement between experiment and theory, the initial elastic deformation of the IVD, possibly associated with the bulging of the IVD into the vertebral bodies or laterally, was removed from the experimental data. Many combinations of the permeability-porosity relationship with the initial osmotic potential (pi(i)) were investigated, and the best-fit parameters for the aggregate modulus (H(A)) and initial permeability (k(i)) were determined. The values of H(A) and k(i) were compared to literature values, and agreed well especially in the context of the adopted high-stress testing regime, and the strain related permeability in the model.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Suporte de Carga
/
Disco Intervertebral
/
Vértebras Lombares
/
Modelos Biológicos
Tipo de estudo:
Diagnostic_studies
/
Evaluation_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2002
Tipo de documento:
Article