Your browser doesn't support javascript.
loading
Arsenate reductases in prokaryotes and eukaryotes.
Mukhopadhyay, Rita; Rosen, Barry P.
Afiliação
  • Mukhopadhyay R; Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. rmukhopad@med.wayne.edu
Environ Health Perspect ; 110 Suppl 5: 745-8, 2002 Oct.
Article em En | MEDLINE | ID: mdl-12426124
ABSTRACT
The ubiquity of arsenic in the environment has led to the evolution of enzymes for arsenic detoxification. An initial step in arsenic metabolism is the enzymatic reduction of arsenate [As(V)] to arsenite [As(III)]. At least three families of arsenate reductase enzymes have arisen, apparently by convergent evolution. The properties of two of these are described here. The first is the prokaryotic ArsC arsenate reductase of Escherichia coli. The second, Acr2p of Saccharomyces cerevisiae, is the only identified eukaryotic arsenate reductase. Although unrelated to each other, both enzymes receive their reducing equivalents from glutaredoxin and reduced glutathione. The structure of the bacterial ArsC has been solved at 1.65 A. As predicted from its biochemical properties, ArsC structures with covalent enzyme-arsenic intermediates that include either As(V) or As(III) were observed. The yeast Acr2p has an active site motif HC(X)(5)R that is conserved in protein phosphotyrosine phosphatases and rhodanases, suggesting that these three groups of enzymes may have evolved from an ancestral oxyanion-binding protein.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arsênio / Saccharomyces cerevisiae / Bombas de Íon / Escherichia coli / Complexos Multienzimáticos Idioma: En Ano de publicação: 2002 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arsênio / Saccharomyces cerevisiae / Bombas de Íon / Escherichia coli / Complexos Multienzimáticos Idioma: En Ano de publicação: 2002 Tipo de documento: Article