Folding of an abridged beta-lactamase.
Biochemistry
; 43(6): 1715-23, 2004 Feb 17.
Article
em En
| MEDLINE
| ID: mdl-14769049
The effects of C-terminal truncation on the equilibrium folding transitions and folding kinetics of B. licheniformis exo small beta-lactamase (ES-betaL) have been measured. ES-betaL lacking 19 residues (ES-betaL(C)(Delta)(19)) has no enzymic activity. Deletion of the last 14 residues produces ES-betaL(C)(Delta)(14), which is 0.1% active. The enzyme lacking nine residues (ES-betaL(C)(Delta)(9)) is nearly fully active, has native optical and hydrodynamic properties, and is protease resistant, a distinguishing feature of the wild-type enzyme. Although ES-betaL(C)(Delta)(9) folds properly, it does so 4 orders of magnitude slower than ES-betaL, making possible the isolation and characterization of a compact intermediate state (I(P) ES-betaL(C)(Delta)(9)). Based on the analysis of folding rates and equilibrium constants, we propose that equilibrium between I(P) ES-betaL(C)(Delta)(9) and other intermediate slow folding. Residues removed in ES-betaL(C)(Delta)(9) and ES-betaL(C)(Delta)(14) are helical and firmly integrated into the enzyme body through many van der Waals interactions involving residues distant in sequence. The results suggest that the deleted residues play a key role in the folding process and also the existence of a modular organization of the protein matrix, at the subdomain level. The results are compared with other examples of this kind in the folding literature.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Bactérias
/
Beta-Lactamases
/
Deleção de Sequência
/
Dobramento de Proteína
Idioma:
En
Ano de publicação:
2004
Tipo de documento:
Article