Your browser doesn't support javascript.
loading
MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes.
Qu, Jihong; Kryukova, Yelena; Potapova, Irina A; Doronin, Sergey V; Larsen, Michael; Krishnamurthy, Ganga; Cohen, Ira S; Robinson, Richard B.
Afiliação
  • Qu J; Department of Pharmacology, Columbia University, New York, NY 10032, USA.
J Biol Chem ; 279(42): 43497-502, 2004 Oct 15.
Article em En | MEDLINE | ID: mdl-15292247
ABSTRACT
MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an interaction could be of considerable physiological significance. However, the functional evidence for MiRP1/HCN interactions in heterologous expression studies has been accompanied by inconsistencies between studies in terms of the specific effects on channel function. To evaluate the effect of MiRP1 on HCN expression and function in a physiological context, we used an adenovirus approach to overexpress a hemagglutinin (HA)-tagged MiRP1 (HAMiRP1) and HCN2 in neonatal rat ventricular myocytes, a cell type that expresses both MiRP1 and HCN2 message at low levels. HA-MiRP1 co-expression with HCN2 resulted in a 4-fold increase in maximal conductance of pacemaker currents compared with HCN2 expression alone. HCN2 activation and deactivation kinetics also changed, being significantly more rapid for voltages between -60 and -95 mV when HA-MiRP1 was co-expressed with HCN2. However, the voltage dependence of activation was not affected. Co-immunoprecipitation experiments demonstrated that expressed HA-MiRP1 and HCN2, as well as endogenous MiRP1 and HCN2, co-assemble in ventricular myocytes. The results indicate that MiRP1 acts as a beta subunit for HCN2 pacemaker channel subunits and alters channel gating at physiologically relevant voltages in cardiac cells.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Ativação do Canal Iônico / Canais de Potássio de Abertura Dependente da Tensão da Membrana / Células Musculares / Canais Iônicos / Proteínas Musculares Limite: Animals Idioma: En Ano de publicação: 2004 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Ativação do Canal Iônico / Canais de Potássio de Abertura Dependente da Tensão da Membrana / Células Musculares / Canais Iônicos / Proteínas Musculares Limite: Animals Idioma: En Ano de publicação: 2004 Tipo de documento: Article