Your browser doesn't support javascript.
loading
Role and regulation of starvation-induced autophagy in the Drosophila fat body.
Scott, Ryan C; Schuldiner, Oren; Neufeld, Thomas P.
Afiliação
  • Scott RC; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis 55455 USA.
Dev Cell ; 7(2): 167-78, 2004 Aug.
Article em En | MEDLINE | ID: mdl-15296714
In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Autofagia / Corpo Adiposo / Drosophila Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2004 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Autofagia / Corpo Adiposo / Drosophila Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2004 Tipo de documento: Article