Your browser doesn't support javascript.
loading
Several signaling pathways are involved in the control of cattle oocyte maturation.
Vigneron, Céline; Perreau, Christine; Dupont, Joélle; Uzbekova, Svetlana; Prigent, Claude; Mermillod, Pascal.
Afiliação
  • Vigneron C; INRA Station de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA/CNRS/Université de Tours Nouzilly, France.
Mol Reprod Dev ; 69(4): 466-74, 2004 Dec.
Article em En | MEDLINE | ID: mdl-15457547
ABSTRACT
The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Oócitos / Oogênese / Transdução de Sinais Limite: Animals Idioma: En Ano de publicação: 2004 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Oócitos / Oogênese / Transdução de Sinais Limite: Animals Idioma: En Ano de publicação: 2004 Tipo de documento: Article