Your browser doesn't support javascript.
loading
Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1.
MacCallum, David E; Melville, Jean; Frame, Sheelagh; Watt, Kathryn; Anderson, Sian; Gianella-Borradori, Athos; Lane, David P; Green, Simon R.
Afiliação
  • MacCallum DE; Cyclacel Ltd., Dundee Technopole, James Lindsay Place, Dundee, United Kingdom. dmaccallum@cyclacel.com
Cancer Res ; 65(12): 5399-407, 2005 Jun 15.
Article em En | MEDLINE | ID: mdl-15958589
ABSTRACT
Seliciclib (CYC202, R-roscovitine) is a cyclin-dependent kinase (CDK) inhibitor that competes for the ATP binding site on the kinase. It has greatest activity against CDK2/cyclin E, CDK7/cyclin H, and CDK9/cyclin T. Seliciclib induces apoptosis from all phases of the cell cycle in tumor cell lines, reduces tumor growth in xenografts in nude mice and is currently in phase II clinical trials. This study investigated the mechanism of cell death in multiple myeloma cells treated with seliciclib. In myeloma cells treated in vitro, seliciclib induced rapid dephosphorylation of the carboxyl-terminal domain of the large subunit of RNA polymerase II. Phosphorylation at these sites is crucial for RNA polymerase II-dependent transcription. Inhibition of transcription would be predicted to exert its greatest effect on gene products where both mRNA and protein have short half-lives, resulting in rapid decline of the protein levels. One such gene product is the antiapoptotic factor Mcl-1, crucial for the survival of a range of cell types including multiple myeloma. As hypothesized, following the inhibition of RNA polymerase II phosphorylation, seliciclib caused rapid Mcl-1 down-regulation, which preceded the induction of apoptosis. The importance of Mcl-1 was confirmed by short interfering RNA, demonstrating that reducing Mcl-1 levels alone was sufficient to induce apoptosis. These results suggest that seliciclib causes myeloma cell death by disrupting the balance between cell survival and apoptosis through the inhibition of transcription and down-regulation of Mcl-1. This study provides the scientific rationale for the clinical development of seliciclib for the treatment of multiple myeloma.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Purinas / RNA Polimerase II / Apoptose / Proteínas Proto-Oncogênicas c-bcl-2 / Mieloma Múltiplo / Proteínas de Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2005 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Purinas / RNA Polimerase II / Apoptose / Proteínas Proto-Oncogênicas c-bcl-2 / Mieloma Múltiplo / Proteínas de Neoplasias Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2005 Tipo de documento: Article