Your browser doesn't support javascript.
loading
Human aromatase: gene resequencing and functional genomics.
Ma, Cynthia X; Adjei, Araba A; Salavaggione, Oreste E; Coronel, Josefa; Pelleymounter, Linda; Wang, Liewei; Eckloff, Bruce W; Schaid, Daniel; Wieben, Eric D; Adjei, Alex A; Weinshilboum, Richard M.
Afiliação
  • Ma CX; Department of Medical Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
Cancer Res ; 65(23): 11071-82, 2005 Dec 01.
Article em En | MEDLINE | ID: mdl-16322257
ABSTRACT
Aromatase [cytochrome P450 19 (CYP19)] is a critical enzyme for estrogen biosynthesis, and aromatase inhibitors are of increasing importance in the treatment of breast cancer. We set out to identify and characterize genetic polymorphisms in the aromatase gene, CYP19, as a step toward pharmacogenomic studies of aromatase inhibitors. Specifically, we "resequenced" all coding exons, all upstream untranslated exons plus their presumed core promoter regions, all exon-intron splice junctions, and a portion of the 3'-untranslated region of CYP19 using 240 DNA samples from four ethnic groups. Eighty-eight polymorphisms were identified, resulting in 44 haplotypes. Functional genomic studies were done with the four nonsynonymous coding single nucleotide polymorphisms (cSNP) that we observed, two of which were novel. Those cSNPs altered the following amino acids Trp39Arg, Thr201Met, Arg264Cys, and Met364Thr. The Cys264, Thr364, and double variant Arg39Cys264 allozymes showed significant decreases in levels of activity and immunoreactive protein when compared with the wild-type (WT) enzyme after transient expression in COS-1 cells. A slight decrease in protein level was also observed for the Arg39 allozyme, whereas Met201 displayed no significant changes in either activity or protein level when compared with the WT enzyme. There was also a 4-fold increase in apparent K(m) value for Thr364 with androstenedione as substrate. Of the recombinant allozymes, only the double mutant (Arg39Cys264) displayed a significant change from the WT enzyme in inhibitor constant for the aromatase inhibitors exemestane and letrozole. These observations indicate that genetic variation in CYP19 might contribute to variation in the pathophysiology of estrogen-dependent disease.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Aromatase Limite: Animals / Humans Idioma: En Ano de publicação: 2005 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Aromatase Limite: Animals / Humans Idioma: En Ano de publicação: 2005 Tipo de documento: Article