Your browser doesn't support javascript.
loading
Production of extracellular matrix components in tissue-engineered blood vessels.
Heydarkhan-Hagvall, Sepideh; Esguerra, Maricris; Helenius, Gisela; Söderberg, Rigmor; Johansson, Bengt R; Risberg, Bo.
Afiliação
  • Heydarkhan-Hagvall S; Department of Surgery, Vascular Engineering Centre, Sahlgrenska University Hospital, Göteborg, Sweden. Sepideh.Hagvall@wlab.gu.se
Tissue Eng ; 12(4): 831-42, 2006 Apr.
Article em En | MEDLINE | ID: mdl-16674296
ABSTRACT
Morphology and compliance of tissue-engineered blood vessels (TEBV) are dependent on the culture period and production of extracellular matrix (ECM) components in order to increase the strength of the developing tissue. The aim of the present study was to evaluate the potential of TEBVs to produce an ECM similar to native arteries and veins. Human smooth muscle cells (SMC) were seeded onto the poly(glycolic acid) (PGA) scaffold and placed in bioreactors filled with DMEM supplemented with growth factors. After 6 weeks, the vessels were harvested from the bioreactors and seeded with human endothelial cells at the lumen for another 3 days. Then, the TEBVs were harvested for RNA and protein isolation for further RT-PCR and Western blot. TEBVs had a similar macroscopic appearance to that of native vessels with no visible evidence of the original PGA. Histological and immunohistochemical analyses indicated the presence of high cell density and development of a highly organized structure of ECM. After 6 weeks of culture, there were significantly lower gene expression of SMC-specific markers, such as alpha-actin, caldesmon, and vimentin, and proteoglycans, such as biglycan, decorin, and versican, and other ECM components, such as collagen I and elastin, in TEBVs, with and without pulsatile conditions, compared to that of native arteries. Gene expression of fibronectin was significantly lower in TEBVs grown during pulsatile conditions compared to that of native arteries. No difference was observed in TEBVs grown during non-pulsatile conditions. The presence of alpha-actin, collagen I, decorin, and fibronectin at protein level was demonstrated in TEBVs with and without pulsatile conditions after 6 weeks and in native veins and arteries as well. How this deviation translates into mechanical properties remains to be explored.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Vasos Sanguíneos / Engenharia Tecidual / Células Endoteliais / Matriz Extracelular / Músculo Liso Vascular Limite: Humans Idioma: En Ano de publicação: 2006 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Vasos Sanguíneos / Engenharia Tecidual / Células Endoteliais / Matriz Extracelular / Músculo Liso Vascular Limite: Humans Idioma: En Ano de publicação: 2006 Tipo de documento: Article