Your browser doesn't support javascript.
loading
Alkylphosphonate modified aluminum oxide surfaces.
Hoque, E; DeRose, J A; Kulik, G; Hoffmann, P; Mathieu, H J; Bhushan, B.
Afiliação
  • Hoque E; Laboratoire de Métallurgie Chimique, Institut des Matériaux, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland. enamul.hoque@epfl.ch
J Phys Chem B ; 110(22): 10855-61, 2006 Jun 08.
Article em En | MEDLINE | ID: mdl-16771337
The surface properties of aluminum, such as chemical composition, roughness, friction, adhesion, and wear, can play an important role in the performance of micro-/nano-electromechanical systems, e.g., digital micromirror devices. Aluminum substrates chemically reacted with octadecylphosphonic acid (ODP/Al), decylphosphonic acid (DP/Al), and octylphosphonic acid (OP/Al) have been investigated and characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM). XPS analysis confirmed the presence of alkylphosphonate molecules on ODP/Al, DP/Al, and OP/Al. No phosphonates were found on bare Al as a control. The sessile drop static contact angle of pure water on ODP/Al and DP/Al was typically more than 115 degrees and on OP/Al typically less than 105 degrees indicating that all phosphonic acid reacted Al samples were highly hydrophobic. The root-mean-square surface roughness for ODP/Al, DP/Al, OP/Al, and bare Al was less than 15 nm as determined by AFM. The surface energy for ODP/Al and DP/Al was determined to be approximately 21 and 22 mJ/m2, respectively, by the Zisman plot method, compared to 25 mJ/m2 for OP/Al. ODP/Al and OP/Al were studied by friction force microscopy, a derivative of AFM, to better understand their micro-/nano-tribological properties. ODP/Al gave the lowest coefficient of friction values while bare Al gave the highest. The adhesion forces for ODP/Al and OP/Al were comparable.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2006 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2006 Tipo de documento: Article