Your browser doesn't support javascript.
loading
Further evidence for a C-terminal structural motif in CCK2 receptor active peptide hormones.
Stone, Shane R; Giragossian, Craig; Mierke, Dale F; Jackson, Graham E.
Afiliação
  • Stone SR; Department of Chemistry, University of Cape Town, Rondebosch 7701, Cape Town, South Africa.
Peptides ; 28(11): 2211-22, 2007 Nov.
Article em En | MEDLINE | ID: mdl-17950490
ABSTRACT
A comparison of the conformational characteristics of the related hormones [Nle(15)] gastrin-17 and [Tyr(9)-SO(3)] cholecystokinin-15, in membrane-mimetic solutions of dodecylphosphocholine micelles and water, was undertaken using NMR spectroscopy to investigate the possibility of a structural motif responsible for the two hormones common ability to stimulate the CCK(2) receptor. Distance geometry calculations and NOE-restrained molecular dynamics simulations in biphasic solvent boxes of decane and water pointed to the two peptides adopting near identical helical C-terminal configurations, which extended one residue further than their shared pentapeptide sequence of Gly-Trp-Met-Asp-Phe-NH(2). The C-terminal conformation of [Nle(15)] gastrin-17 contained a short alpha-helix spanning the Ala(11)-Trp(14) sequence and an inverse gamma-turn centered on Nle(15) while that of [Tyr(9)-SO(3)] cholecystokinin-15 contained a short 3(10) helix spanning its Met(10) to Met(13) sequence and an inverse gamma-turn centered on Asp(14). Significantly, both the C-terminal helices were found to terminate in type I beta-turns spanning the homologous Gly-Trp-Met-Asp sequences. This finding supports the hypothesis that this structural motif is a necessary condition for CCK(2) receptor activation given that both gastrin and cholecystokinin have been established to follow a membrane-associated pathway to receptor recognition and activation. Comparison of the conformations for the non-homologous C-terminal tyrosyl residues of [Nle(15)] gastrin-17 and [Tyr(9)-SO(3)] cholecystokinin-15 found that they lie on opposite faces of the conserved C-terminal helices. The positioning of this tyrosyl residue is known to be essential for CCK(1) activity and non-essential for CCK(2) activity, pointing to it as a possible differentiator in CCK(1)/CCK(2) receptor selection. The different tyrosyl orientations were retained in molecular models for the [Nle(15)] gastrin-17/CCK(2) receptor and [Tyr(9)-SO(3)] cholecystokinin-15/CCK(1) receptor complexes, highlighting the role of this residue as a likely CCK(1)/CCK(2) receptor differentiator.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Gastrinas / Motivos de Aminoácidos / Receptor de Colecistocinina B Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2007 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Gastrinas / Motivos de Aminoácidos / Receptor de Colecistocinina B Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2007 Tipo de documento: Article