Your browser doesn't support javascript.
loading
A mitochondrial kinase complex is essential to mediate an ERK1/2-dependent phosphorylation of a key regulatory protein in steroid biosynthesis.
Poderoso, Cecilia; Converso, Daniela P; Maloberti, Paula; Duarte, Alejandra; Neuman, Isabel; Galli, Soledad; Cornejo Maciel, Fabiana; Paz, Cristina; Carreras, María C; Poderoso, Juan J; Podestá, Ernesto J.
Afiliação
  • Poderoso C; Instituto de Investigaciones Moleculares de Enfermedades Hormonales, Neurodegenerativas y Oncológicas (IIMHNO), Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
PLoS One ; 3(1): e1443, 2008 Jan 16.
Article em En | MEDLINE | ID: mdl-18197253
ABSTRACT
ERK1/2 is known to be involved in hormone-stimulated steroid synthesis, but its exact roles and the underlying mechanisms remain elusive. Both ERK1/2 phosphorylation and steroidogenesis may be triggered by cAMP/cAMP-dependent protein kinase (PKA)-dependent and-independent mechanisms; however, ERK1/2 activation by cAMP results in a maximal steroidogenic rate, whereas canonical activation by epidermal growth factor (EGF) does not. We demonstrate herein by Western blot analysis and confocal studies that temporal mitochondrial ERK1/2 activation is obligatory for PKA-mediated steroidogenesis in the Leydig-transformed MA-10 cell line. PKA activity leads to the phosphorylation of a constitutive mitochondrial MEK1/2 pool with a lower effect in cytosolic MEKs, while EGF allows predominant cytosolic MEK activation and nuclear pERK1/2 localization. These results would explain why PKA favors a more durable ERK1/2 activation in mitochondria than does EGF. By means of ex vivo experiments, we showed that mitochondrial maximal steroidogenesis occurred as a result of the mutual action of steroidogenic acute regulatory (StAR) protein -a key regulatory component in steroid biosynthesis-, active ERK1/2 and PKA. Our results indicate that there is an interaction between mitochondrial StAR and ERK1/2, involving a D domain with sequential basic-hydrophobic motifs similar to ERK substrates. As a result of this binding and only in the presence of cholesterol, ERK1/2 phosphorylates StAR at Ser(232). Directed mutagenesis of Ser(232) to a non-phosphorylable amino acid such as Ala (StAR S232A) inhibited in vitro StAR phosphorylation by active ERK1/2. Transient transfection of MA-10 cells with StAR S232A markedly reduced the yield of progesterone production. In summary, here we show that StAR is a novel substrate of ERK1/2, and that mitochondrial ERK1/2 is part of a multimeric protein kinase complex that regulates cholesterol transport. The role of MAPKs in mitochondrial function is underlined.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Progesterona / Proteína Quinase 1 Ativada por Mitógeno / Proteína Quinase 3 Ativada por Mitógeno Limite: Animals Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Progesterona / Proteína Quinase 1 Ativada por Mitógeno / Proteína Quinase 3 Ativada por Mitógeno Limite: Animals Idioma: En Ano de publicação: 2008 Tipo de documento: Article