Your browser doesn't support javascript.
loading
Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre.
Nature ; 455(7209): 78-80, 2008 Sep 04.
Article em En | MEDLINE | ID: mdl-18769434
ABSTRACT
The cores of most galaxies are thought to harbour supermassive black holes, which power galactic nuclei by converting the gravitational energy of accreting matter into radiation. Sagittarius A* (Sgr A*), the compact source of radio, infrared and X-ray emission at the centre of the Milky Way, is the closest example of this phenomenon, with an estimated black hole mass that is 4,000,000 times that of the Sun. A long-standing astronomical goal is to resolve structures in the innermost accretion flow surrounding Sgr A*, where strong gravitational fields will distort the appearance of radiation emitted near the black hole. Radio observations at wavelengths of 3.5 mm and 7 mm have detected intrinsic structure in Sgr A*, but the spatial resolution of observations at these wavelengths is limited by interstellar scattering. Here we report observations at a wavelength of 1.3 mm that set a size of 37(+16)(-10) microarcseconds on the intrinsic diameter of Sgr A*. This is less than the expected apparent size of the event horizon of the presumed black hole, suggesting that the bulk of Sgr A* emission may not be centred on the black hole, but arises in the surrounding accretion flow.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2008 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2008 Tipo de documento: Article