Your browser doesn't support javascript.
loading
Evaluation of electroosmotic drag coefficient of water in hydrated sodium perfluorosulfonate electrolyte polymer.
Yan, Liuming; Shao, Changle; Ji, Xiaobo.
Afiliação
  • Yan L; Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China. liuming.yan@shu.edu.cn
J Comput Chem ; 30(9): 1361-70, 2009 Jul 15.
Article em En | MEDLINE | ID: mdl-19009606
ABSTRACT
The electroosmotic drag coefficient of water molecules in hydrated sodium perfluorosulfonate electrolyte polymer is evaluated on the basis of the velocity distribution functions of the sodium cations and water molecules with an electric field applied using molecular dynamics simulations. The simulation results indicate that both velocity distribution functions of water molecules and of sodium cations agree well with the classic Maxwellian velocity distribution functions when there is no electric field applied. If an electric field is applied, the distribution functions of velocity component in directions perpendicular to the applied electric field still agree with the Maxwellian velocity distribution functions but with different temperature parameters. In the direction of the applied electric field, the electric drag causes the velocity distribution function to deviate from the Maxwellian velocity distribution function; however, to obey the peak shifted Maxwellian distribution function. The peak shifting velocities coincide with the average transport velocities induced by the electric field, and could be applied to the evaluation of the electroosmotic drag coefficient of water. By evaluation of the transport velocities of water molecules in the first coordination shells of sodium cations, sulfonate anion groups, and in the bulk, it is clearly shown that the water molecules in the first coordination shell of sodium cations are the major contribution to the electroosmotic drag and momentum transfer from water molecules within the first coordination shell to the other water molecules also contributes to the electroosmotic drag.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Polímeros de Fluorcarboneto / Água Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Polímeros / Polímeros de Fluorcarboneto / Água Idioma: En Ano de publicação: 2009 Tipo de documento: Article