Your browser doesn't support javascript.
loading
Double excitations in finite systems.
Romaniello, P; Sangalli, D; Berger, J A; Sottile, F; Molinari, L G; Reining, L; Onida, G.
Afiliação
  • Romaniello P; Laboratoire des Solides Irradies UMR 7642, CNRS-CEA/DSM, Ecole Polytechnique, F-91128 Palaiseau, France. pina.romaniello@polytechnique.edu
J Chem Phys ; 130(4): 044108, 2009 Jan 28.
Article em En | MEDLINE | ID: mdl-19191378
ABSTRACT
Time-dependent density-functional theory (TDDFT) is widely used in the study of linear response properties of finite systems. However, there are difficulties in properly describing excited states, which have double- and higher-excitation characters, which are particularly important in molecules with an open-shell ground state. These states would be described if the exact TDDFT kernel were used; however, within the adiabatic approximation to the exchange-correlation (xc) kernel, the calculated excitation energies have a strict single-excitation character and are fewer than the real ones. A frequency-dependent xc kernel could create extra poles in the response function, which would describe states with a multiple-excitation character. We introduce a frequency-dependent xc kernel, which can reproduce, within TDDFT, double excitations in finite systems. In order to achieve this, we use the Bethe-Salpeter equation with a dynamically screened Coulomb interaction W(omega), which can describe these excitations, and from this we obtain the xc kernel. Using a two-electron model system, we show that the frequency dependence of W does indeed introduce the double excitations that are instead absent in any static approximation of the electron-hole screening.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2009 Tipo de documento: Article