Your browser doesn't support javascript.
loading
Inhibition of adult rat retinal ganglion cells by D1-type dopamine receptor activation.
Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J; Oi, Hanako; Stradleigh, Tyler W; Lee, Sherwin C; Colado, Anselmo Felipe; Ishida, Andrew T.
Afiliação
  • Hayashida Y; Department of Neurobiology, University of California, Davis, California 95616, USA.
J Neurosci ; 29(47): 15001-16, 2009 Nov 25.
Article em En | MEDLINE | ID: mdl-19940196
ABSTRACT
The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D(1a) receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D(1)-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D(1)-type receptors, SCH-23390 [R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine] reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking I(h). Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na(+) current (I(Na)) amplitude, and tetrodotoxin, at doses that reduced I(Na) as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D(1)-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the presynaptic and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Ganglionares da Retina / Potenciais de Ação / Dopamina / Receptores de Dopamina D1 / Transmissão Sináptica / Inibição Neural Limite: Animals Idioma: En Ano de publicação: 2009 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células Ganglionares da Retina / Potenciais de Ação / Dopamina / Receptores de Dopamina D1 / Transmissão Sináptica / Inibição Neural Limite: Animals Idioma: En Ano de publicação: 2009 Tipo de documento: Article