Your browser doesn't support javascript.
loading
Fluorescence and kinetic properties of Ru(III) (NH3)5 modified transferrin.
Martin, D M; Chasteen, N D; Grady, J K.
Afiliação
  • Martin DM; Department of Chemistry, University of New Hampshire, Durham, NH 03824.
Biochim Biophys Acta ; 1076(2): 252-8, 1991 Jan 29.
Article em En | MEDLINE | ID: mdl-1998724
ABSTRACT
Diferric transferrin was modified using aquopentaammine ruthenium(II), a reagent for surface-accessible uncoordinated histidines. Introduction of the cationic Ru(III) (NH3)3 + 5 group on the imidazole of only 5.5 of the 17 uncoordinated histidines enhances the rates of pyrophosphate-assisted iron removal from the N-terminal and C-terminal binding sites by 16- and 2-fold, respectively. This differential effect on the kinetics of the two sites may partially explain why in the native protein the N-terminal site is more labile than the C-terminal site in acidic solutions where histidine residues become positively charged through protonation. The distance between the metal site and nearby uncoordinated histidines was estimated from fluorescence energy transfer measurements using Tb (III) as the donor and pentaammine ruthenium(III)-labeled imidazole of histidine as the acceptor chromophore. A Tsou Chen-Lu statistical analysis of the fluorescence quenching data suggest that two residues in each lobe of the protein are involved in quenching the fluorescence. By using estimates for the index of refraction and the quantum yield and assuming the energy transfer follows parallel first-order kinetics, an upper limit for the donor-acceptor distance of about 1.4 nm was obtained, assuming two uncoordinated histidine residues equidistant from the metal. His-207 and His-242 in the N-terminal lobe of transferrin and His-535 and His-577 in the C-terminal lobe are within this distance, based on information from the lactoferrin crystal structure. It is postulated that His-207 in the N-terminal lobe and His-535 in the C-terminal lobe are the uncoordinated residues that, when protonated or modified with Ru(III) (NH3)3 + 5, lead to accelerated loss of iron from the two binding sites of the protein.
Assuntos
Buscar no Google
Base de dados: MEDLINE Assunto principal: Rutênio / Transferrina / Compostos de Rutênio Limite: Humans Idioma: En Ano de publicação: 1991 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Assunto principal: Rutênio / Transferrina / Compostos de Rutênio Limite: Humans Idioma: En Ano de publicação: 1991 Tipo de documento: Article