Your browser doesn't support javascript.
loading
Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase.
Stahmann, Nadine; Woods, Angela; Spengler, Katrin; Heslegrave, Amanda; Bauer, Reinhard; Krause, Siegfried; Viollet, Benoit; Carling, David; Heller, Regine.
Afiliação
  • Stahmann N; Institute for Molecular Cell Biology, Center for Molecular Biomedicine, Friedrich Schiller University of Jena, 07745 Jena, Germany.
J Biol Chem ; 285(14): 10638-52, 2010 Apr 02.
Article em En | MEDLINE | ID: mdl-20129920
ABSTRACT
AMP-activated protein kinase (AMPK) is a sensor of cellular energy state and a regulator of cellular homeostasis. In endothelial cells, AMPK is stimulated via the upstream kinases LKB1 and Ca(2+)/calmodulin-dependent protein kinase kinase beta (CaMKKbeta). Previously, AMPK has been reported to activate endothelial nitric-oxide synthase (eNOS). Using genetic and pharmacological approaches, we show that vascular endothelial growth factor (VEGF) stimulates AMPK in human and mice endothelial cells via CaMKKbeta. VEGF-induced AMPK activation is potentiated under conditions of energy deprivation induced by 2-deoxyglucose. To investigate the role of AMPK in endothelial function, CaMKKbeta, AMPKalpha1, or AMPKalpha2 was down-regulated by RNA interference, and studies in AMPKalpha1(-/-) mice were performed. We demonstrate that AMPK does not mediate eNOS phosphorylation at serine residue 1177 or 633, NO- dependent cGMP generation, or Akt phosphorylation in response to VEGF. Using inhibitors of eNOS or soluble guanylyl cyclase and small interfering RNA against eNOS, we show that NO does not act upstream of AMPK. Taken together, these data indicate that VEGF-stimulated AMPK and eNOS pathways act independently of each other. However, acetyl-CoA carboxylase, a key enzyme in the regulation of fatty acid oxidation, was phosphorylated in response to VEGF in an AMPKalpha1- and AMPKalpha2-dependent manner. Our results show that AMPKalpha1 plays an essential role in VEGF-induced angiogenesis in vitro (tube formation and sprouting from spheroids) and in vivo (Matrigel plug assay). In contrast, AMPKalpha2 was not involved in VEGF-triggered sprouting. The data suggest that AMPKalpha1 promotes VEGF-induced angiogenesis independently of eNOS, possibly by providing energy via inhibition of acetyl-CoA carboxylase.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neovascularização Fisiológica / Fator A de Crescimento do Endotélio Vascular / Óxido Nítrico Sintase Tipo III / Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina / Proteínas Quinases Ativadas por AMP Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Neovascularização Fisiológica / Fator A de Crescimento do Endotélio Vascular / Óxido Nítrico Sintase Tipo III / Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina / Proteínas Quinases Ativadas por AMP Idioma: En Ano de publicação: 2010 Tipo de documento: Article