Your browser doesn't support javascript.
loading
Activation of N-methyl-D-aspartate (NMDA) receptors in the dorsal vagal complex lowers glucose production.
Lam, Carol K L; Chari, Madhu; Su, Brenda B; Cheung, Grace W C; Kokorovic, Andrea; Yang, Clair S; Wang, Penny Y T; Lai, Teresa Y Y; Lam, Tony K T.
Afiliação
  • Lam CK; Toronto General Research Institute, University Health Network, Toronto M5G 1L7, Canada.
J Biol Chem ; 285(29): 21913-21, 2010 Jul 16.
Article em En | MEDLINE | ID: mdl-20448042
ABSTRACT
Diabetes is characterized by hyperglycemia due partly to increased hepatic glucose production. The hypothalamus regulates hepatic glucose production in rodents. However, it is currently unknown whether other regions of the brain are sufficient in glucose production regulation. The N-methyl-D-aspartate (NMDA) receptor is composed of NR1 and NR2 subunits, which are activated by co-agonist glycine and glutamate or aspartate, respectively. Here we report that direct administration of either co-agonist glycine or NMDA into the dorsal vagal complex (DVC), targeting the nucleus of the solitary tract, lowered glucose production in vivo. Direct infusion of the NMDA receptor blocker MK-801 into the DVC negated the metabolic effect of glycine. To evaluate whether NR1 subunit of the NMDA receptor mediates the effect of glycine, NR1 in the DVC was inhibited by DVC NR1 antagonist 7-chlorokynurenic acid or DVC shRNA-NR1. Pharmacological and molecular inhibition of DVC NR1 negated the metabolic effect of glycine. To evaluate whether the NMDA receptors mediate the effects of NR2 agonist NMDA, DVC NMDA receptors were inhibited by antagonist D-2-amino-5-phosphonovaleric acid (D-APV). DVC D-APV fully negated the ability of DVC NMDA to lower glucose production. Finally, hepatic vagotomy negated the DVC glycine ability to lower glucose production. These findings demonstrate that activation of NR1 and NR2 subunits of the NMDA receptors in the DVC is sufficient to trigger a brain-liver axis to lower glucose production, and suggest that DVC NMDA receptors serve as a therapeutic target for diabetes and obesity.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nervo Vago / Receptores de N-Metil-D-Aspartato / Glucose Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nervo Vago / Receptores de N-Metil-D-Aspartato / Glucose Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2010 Tipo de documento: Article