Your browser doesn't support javascript.
loading
A new dominant peroxiredoxin allele identified by whole-genome re-sequencing of random mutagenized yeast causes oxidant-resistance and premature aging.
Timmermann, Bernd; Jarolim, Stefanie; Russmayer, Hannes; Kerick, Martin; Michel, Steve; Krüger, Antje; Bluemlein, Katharina; Laun, Peter; Grillari, Johannes; Lehrach, Hans; Breitenbach, Michael; Ralser, Markus.
Afiliação
  • Timmermann B; Next Generation Sequencing Group, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
Aging (Albany NY) ; 2(8): 475-86, 2010 Aug.
Article em En | MEDLINE | ID: mdl-20729566
ABSTRACT
The combination of functional genomics with next generation sequencing facilitates new experimental strategies for addressing complex biological phenomena. Here, we report the identification of a gain-of-function allele of peroxiredoxin (thioredoxin peroxidase, Tsa1p) via whole-genome re-sequencing of a dominantSaccharomyces cerevisiae mutant obtained by chemical mutagenesis. Yeast strain K6001, a screening system for lifespan phenotypes, was treated with ethyl methanesulfonate (EMS). We isolated an oxidative stress-resistant mutant (B7) which transmitted this phenotype in a background-independent, monogenic and dominant way. By massive parallel pyrosequencing, we generated an 38.8 fold whole-genome coverage of the strains, which differed in 12,482 positions from the reference (S288c) genome. Via a subtraction strategy, we could narrow this number to 13 total and 4 missense nucleotide variations that were specific for the mutant. Via expression in wild type backgrounds, we show that one of these mutations, exchanging a residue in the peroxiredoxin Tsa1p, was responsible for the mutant phenotype causing background-independent dominant oxidative stress-resistance. These effects were not provoked by altered Tsa1p levels, nor could they be simulated by deletion, haploinsufficiency or over-expression of the wild-type allele. Furthermore, via both a mother-enrichment technique and a micromanipulation assay, we found a robust premature aging phenotype of this oxidant-resistant strain. Thus, TSA1-B7 encodes for a novel dominant form of peroxiredoxin, and establishes a new connection between oxidative stress and aging. In addition, this study shows that the re-sequencing of entire genomes is becoming a promising alternative for the identification of functional alleles in approaches of classic molecular genetics.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peroxidases / Genoma Fúngico / Estresse Oxidativo / Proteínas de Saccharomyces cerevisiae / Proliferação de Células / Alelos Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2010 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peroxidases / Genoma Fúngico / Estresse Oxidativo / Proteínas de Saccharomyces cerevisiae / Proliferação de Células / Alelos Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Ano de publicação: 2010 Tipo de documento: Article