Your browser doesn't support javascript.
loading
HDAC3-dependent reversible lysine acetylation of cardiac myosin heavy chain isoforms modulates their enzymatic and motor activity.
Samant, Sadhana A; Courson, David S; Sundaresan, Nagalingam R; Pillai, Vinodkumar B; Tan, Minjia; Zhao, Yingming; Shroff, Sanjeev G; Rock, Ronald S; Gupta, Mahesh P.
Afiliação
  • Samant SA; Department of Surgery, University of Chicago, Chicago, Illinois 60637, USA.
J Biol Chem ; 286(7): 5567-77, 2011 Feb 18.
Article em En | MEDLINE | ID: mdl-21177250
ABSTRACT
Reversible lysine acetylation is a widespread post-translational modification controlling the activity of proteins in different subcellular compartments. We previously demonstrated that a class II histone deacetylase (HDAC), HDAC4, and a histone acetyltransferase, PCAF, associate with cardiac sarcomeres, and a class I and II HDAC inhibitor, trichostatin A, enhances contractile activity of myofilaments. In this study, we show that a class I HDAC, HDAC3, is also present at cardiac sarcomeres. By immunohistochemical and electron microscopic analyses, we found that HDAC3 was localized to the A band of sarcomeres and was capable of deacetylating myosin heavy chain (MHC) isoforms. The motor domains of both cardiac α- and ß-MHC isoforms were found to be reversibly acetylated. Biomechanical studies revealed that lysine acetylation significantly decreased the K(m) for the actin-activated ATPase activity of both α- and ß-MHC isoforms. By an in vitro motility assay, we found that lysine acetylation increased the actin sliding velocity of α-myosin by 20% and ß-myosin by 36%, compared to their respective non-acetylated isoforms. Moreover, myosin acetylation was found to be sensitive to cardiac stress. During induction of hypertrophy, myosin isoform acetylation increased progressively with duration of stress stimuli, independent of isoform shift, suggesting that lysine acetylation of myosin could be an early response of myofilaments to increase contractile performance of the heart. These studies provide the first evidence for localization of HDAC3 at myofilaments and uncover a novel mechanism modulating the motor activity of cardiac MHC isoforms.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citoesqueleto de Actina / Cadeias Pesadas de Miosina / Miosinas Cardíacas / Histona Desacetilases / Miocárdio Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citoesqueleto de Actina / Cadeias Pesadas de Miosina / Miosinas Cardíacas / Histona Desacetilases / Miocárdio Limite: Animals Idioma: En Ano de publicação: 2011 Tipo de documento: Article