Your browser doesn't support javascript.
loading
Enhancement of ß-xylosidase productivity in cellulase producing fungus Acremonium cellulolyticus.
Kanna, Machi; Yano, Shinichi; Inoue, Hiroyuki; Fujii, Tatsuya; Sawayama, Shigeki.
Afiliação
  • Kanna M; Biomass Technology Research Center, National Institute of Advanced Industrial Science and Technology, 3-11-32 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046 Japan. s-yano@aist.go.jp.
AMB Express ; 1(1): 15, 2011 Jun 30.
Article em En | MEDLINE | ID: mdl-21906369
ABSTRACT
Enzymatic hydrolysis is one of the most important processes in bioethanol production from lignocellulosic biomass. Acremonium cellulolyticus is a filamentous fungus with high cellulase production but productivity of hemicellulase, especially ß-xylosidase, is lower than other filamentous fungi. We identified 2.4 Kb ß-xylosidase gene in the A. cellulolyticus genome sequence information and it encoded 798 amino acids without introns. To enhance hemicellulase productivity in A. cellulolyticus, we transformed this fungus with the identified ß-xylosidase gene driven by the cellobiohydrolase Ι (cbh1) promoter, using the protoplast-polyethyleneglycol (PEG) method, and obtained a transformant, YKX1. Hydrolysis rate of xylooligosaccharides was more than 50-fold higher using culture supernatant from YKX1 than that from the parental strain, Y-94. Total cellulase activity (measured by filter paper assay) in YKX1 was not affected by the cbh1 promoter used for expression of ß-xylosidase, and induced by cellulose. Since YKX1 can produce larger amount of ß-xylosidase without affecting cellulase productivity, it is considered to be beneficial for practical monosaccharide recoveries from lignocellulosic biomass.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2011 Tipo de documento: Article