Your browser doesn't support javascript.
loading
Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells.
Knobel, Philip A; Kotov, Ilya N; Felley-Bosco, Emanuela; Stahel, Rolf A; Marti, Thomas M.
Afiliação
  • Knobel PA; Laboratory of Molecular Oncology, Clinic and Polyclinic of Oncology, University Hospital Zurich, Zurich, Switzerland.
Neoplasia ; 13(10): 961-70, 2011 Oct.
Article em En | MEDLINE | ID: mdl-22028621
ABSTRACT
REV3 is the catalytic subunit of DNA translesion synthesis polymerase ζ. Inhibition of REV3 expression increases the sensitivity of human cells to a variety of DNA-damaging agents and reduces the formation of resistant cells. Surprisingly, we found that short hairpin RNA-mediated depletion of REV3 per se suppresses colony formation of lung (A549, Calu-3), breast (MCF-7, MDA-MB-231), mesothelioma (IL45 and ZL55), and colon (HCT116 +/-p53) tumor cell lines, whereas control cell lines (AD293, LP9-hTERT) and the normal mesothelial primary culture (SDM104) are less affected. Inhibition of REV3 expression in cancer cells leads to an accumulation of persistent DNA damage as indicated by an increase in phospho-ATM, 53BP1, and phospho-H2AX foci formation, subsequently leading to the activation of the ATM-dependent DNA damage response cascade. REV3 depletion in p53-proficient cancer cell lines results in a G(1) arrest and induction of senescence as indicated by the accumulation of p21 and an increase in senescence-associated ß-galactosidase activity. In contrast, inhibition of REV3 expression in p53-deficient cells results in growth inhibition and a G(2)/M arrest. A small fraction of the p53-deficient cancer cells can overcome the G(2)/M arrest, which results in mitotic slippage and aneuploidy. Our findings reveal that REV3 depletion per se suppresses growth of cancer cell lines from different origin, whereas control cell lines and a mesothelial primary culture were less affected. Thus, our findings indicate that depletion of REV3 not only can amend cisplatin-based cancer therapy but also can be applied for susceptible cancers as a potential monotherapy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dano ao DNA / Interferência de RNA / Proliferação de Células / Proteínas de Ligação a DNA / DNA Polimerase Dirigida por DNA Limite: Humans Idioma: En Ano de publicação: 2011 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dano ao DNA / Interferência de RNA / Proliferação de Células / Proteínas de Ligação a DNA / DNA Polimerase Dirigida por DNA Limite: Humans Idioma: En Ano de publicação: 2011 Tipo de documento: Article