Your browser doesn't support javascript.
loading
Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy.
Killgore, Jason P; Hurley, Donna C.
Afiliação
  • Killgore JP; Materials Reliability Division, National Institute of Standards and Technology, Boulder, CO, USA. jason.killgore@nist.gov
Nanotechnology ; 23(5): 055702, 2012 Feb 10.
Article em En | MEDLINE | ID: mdl-22236758
Atomic force microscopy (AFM) methods for quantitative measurements of elastic modulus on stiff (>10 GPa) materials typically require tip-sample contact forces in the range from hundreds of nanonewtons to a few micronewtons. Such large forces can cause sample damage and preclude direct measurement of ultrathin films or nanofeatures. Here, we present a contact resonance spectroscopy AFM technique that utilizes a cantilever's higher flexural eigenmodes to enable modulus measurements with contact forces as low as 10 nN, even on stiff materials. Analysis with a simple analytical beam model of spectra for a compliant cantilever's fourth and fifth flexural eigenmodes in contact yielded good agreement with bulk measurements of modulus on glass samples in the 50-75 GPa range. In contrast, corresponding analysis of the conventionally used first and second eigenmode spectra gave poor agreement under the experimental conditions. We used finite element analysis to understand the dynamic contact response of a cantilever with a physically realistic geometry. Compared to lower eigenmodes, the results from higher modes are less affected by model parameters such as lateral stiffness that are either unknown or not considered in the analytical model. Overall, the technique enables local mechanical characterization of materials previously inaccessible to AFM-based nanomechanics methods.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article