Global kinetic analysis of proteolysis via quantitative targeted proteomics.
Proc Natl Acad Sci U S A
; 109(6): 1913-8, 2012 Feb 07.
Article
em En
| MEDLINE
| ID: mdl-22308409
Mass spectrometry-based proteomics is a powerful tool for identifying hundreds to thousands of posttranslational modifications in complex mixtures. However, it remains enormously challenging to simultaneously assess the intrinsic catalytic efficiencies (k(cat)/K(M)) of these modifications in the context of their natural interactors. Such fundamental enzymological constants are key to determining substrate specificity and for establishing the timing and importance of cellular signaling. Here, we report the use of selected reaction monitoring (SRM) for tracking proteolysis induced by human apoptotic caspases-3, -7, -8, and -9 in lysates and living cells. By following the appearance of the cleaved peptides in lysate as a function of time, we were able to determine hundreds of catalytic efficiencies in parallel. Remarkably, we find the rates of substrate hydrolysis for individual caspases vary greater than 500-fold indicating a sequential process. Moreover, the rank-order of substrate cutting is similar in apoptotic cells, suggesting that cellular structures do not dramatically alter substrate accessibility. Comparisons of extrinsic (TRAIL) and intrinsic (staurosporine) inducers of apoptosis revealed similar substrate profiles, suggesting the final proteolytic demolitions proceed by similarly ordered plans. Certain biological processes were rapidly targeted by the caspases, including multiple components of the endocyotic pathway and miRNA processing machinery. We believe this massively parallel and quantitative label-free approach to obtaining basic enzymological constants will facilitate the study of proteolysis and other posttranslational modifications in complex mixtures.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteômica
/
Proteólise
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2012
Tipo de documento:
Article