Your browser doesn't support javascript.
loading
Overexpression of reactive cysteine-containing 2-nitrobenzoate nitroreductase (NbaA) and its mutants alters the sensitivity of Escherichia coli to reactive oxygen species by reprogramming a regulatory network of disulfide-bonded proteins.
Kim, Yong-Hak; Yu, Myeong-Hee.
Afiliação
  • Kim YH; Department of Microbiology, Catholic University of Daegu School of Medicine , Daegu705-718, Republic of Korea.
J Proteome Res ; 11(6): 3219-30, 2012 Jun 01.
Article em En | MEDLINE | ID: mdl-22564194
ABSTRACT
The effects of redox-sensitive proteins on Escherichia coli were investigated by overexpressing Pseudomonas 2-nitrobenzoate nitroreductase (NbaA) and its mutants. Overexpression of wild-type and mutant NbaA proteins significantly altered the sensitivity of E. coli to antibiotics and reactive oxygen species regardless of the enzyme activity for reduction of 2-nitrobenzoic acid. The overexpressed proteins rendered cells 100-10000-fold more sensitive to superoxide anion (O2(•-))-generating paraquat and 10-100-fold more resistant to H2O2. A significant increase in intracellular levels of O2(•-), but not H2O2, was observed during expression of wild-type and truncated (Δ65-74, Δ193-216, and Δ65-74Δ193-216) NbaA. From two-dimensional nonreducing/reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry analyses, 29 abundant proteins in the cytoplasm were identified to form interchain disulfide bonds, when cells were exposed to polymyxin B. Of them, down-regulation and modifications of SodB, KatE, and KatG were strongly associated with elevated cellular O2(•-) levels. Western blotting showed up-regulation of cell death signal sensor, CpxA, and down-regulation of cytoplasmic superoxide dismutase, SodB, with ∼2-fold up-regulation of heterodimeric integration host factor, Ihf. Activity gel assays revealed significant reduction of glyceraldehyde-3-phosphate dehydrogenase with constant levels of 6-phosphogluconate dehydrogenase. These changes would support a high level of NADPH to reduce H2O2-induced disulfide bonds by forced expression of thioredoxin A via thioredoxin reductase. Thus, overexpression of wild-type and truncated NbaA partially compensates for the lack of KatE and KatG to degrade H2O2, thereby enhancing disulfide bond formation in the cytoplasm, and modifies a regulatory network of disulfide-bonded proteins to increase intracellular O2(•-) levels.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nitrorredutases / Espécies Reativas de Oxigênio / Proteínas de Escherichia coli / Escherichia coli Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nitrorredutases / Espécies Reativas de Oxigênio / Proteínas de Escherichia coli / Escherichia coli Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2012 Tipo de documento: Article