Your browser doesn't support javascript.
loading
Three-dimensional motion tracking for high-resolution optical microscopy, in vivo.
Bakalar, Matthew; Schroeder, James L; Pursley, Randall; Pohida, Thomas J; Glancy, Brian; Taylor, Joni; Chess, David; Kellman, Peter; Xue, Hui; Balaban, Robert S.
Afiliação
  • Bakalar M; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
  • Schroeder JL; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
  • Pursley R; CIT Signal Processing Group, Princeton, New Jersey, USA.
  • Pohida TJ; CIT Signal Processing Group, Princeton, New Jersey, USA.
  • Glancy B; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
  • Taylor J; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
  • Chess D; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
  • Kellman P; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
  • Xue H; Siemens Corporate Research, Princeton, New Jersey, USA.
  • Balaban RS; Laboratory of Cardiac Energetics National Heart Lung and Blood Institute, Princeton, New Jersey, USA.
J Microsc ; 246(3): 237-247, 2012 Jun.
Article em En | MEDLINE | ID: mdl-22582797
ABSTRACT
When conducting optical imaging experiments, in vivo, the signal to noise ratio and effective spatial and temporal resolution is fundamentally limited by physiological motion of the tissue. A three-dimensional (3D) motion tracking scheme, using a multiphoton excitation microscope with a resonant galvanometer, (512 × 512 pixels at 33 frames s(-1)) is described to overcome physiological motion, in vivo. The use of commercially available graphical processing units permitted the rapid 3D cross-correlation of sequential volumes to detect displacements and adjust tissue position to track motions in near real-time. Motion phantom tests maintained micron resolution with displacement velocities of up to 200 µm min(-1), well within the drift observed in many biological tissues under physiologically relevant conditions. In vivo experiments on mouse skeletal muscle using the capillary vasculature with luminal dye as a displacement reference revealed an effective and robust method of tracking tissue motion to enable (1) signal averaging over time without compromising resolution, and (2) tracking of cellular regions during a physiological perturbation.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Microscopia de Vídeo / Imageamento Tridimensional / Locomoção / Microscopia de Fluorescência Limite: Animals Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Músculo Esquelético / Microscopia de Vídeo / Imageamento Tridimensional / Locomoção / Microscopia de Fluorescência Limite: Animals Idioma: En Ano de publicação: 2012 Tipo de documento: Article