[Recognition of corn seeds based on pattern recognition and near infrared spectroscopy technology].
Guang Pu Xue Yu Guang Pu Fen Xi
; 32(5): 1209-12, 2012 May.
Article
em Zh
| MEDLINE
| ID: mdl-22827055
Pattern recognition technology and data mining methods have become a hot topic in chemometrics. Near infrared (NIR) spectroscopic analysis has been widely used in spectrum signal processing and modeling since it has advantages of quickness, simplicity and nondestructiveness. Based on five different methods of pattern recognition, namely the locally linear embedding (LLE), wavelet transform (WT), principal component analysis (PCA), partial least squares (PLS) and support vector machine (SVM), the pattern recognition system for corn seeds was proposed using NIR technology, and applied to classification of 108 hybrid samples and 178 female samples for corn seeds. Firstly, we get rid of noise or reduce the dimension using LLE, WT, PCA, PLS, and then use SVM to identify two-class samples. In the meantime, 1-norm SVM is the method of direct classification and identification. Experimental results of three different spectral regions show that the performances of three methods: PCA+SVM, LLE+SVM, PLS+SVM are superior to WT+SVM and 1-norm SVM methods, and obtain a high classification accuracy, which indicates the feasibility and effectiveness of the proposed methods. Moreover, this investigation provides the theoretical support and practical method for recognition of corn seeds utilizing near infrared spectral data.
Buscar no Google
Base de dados:
MEDLINE
Assunto principal:
Sementes
/
Reconhecimento Automatizado de Padrão
/
Espectroscopia de Luz Próxima ao Infravermelho
/
Zea mays
Idioma:
Zh
Ano de publicação:
2012
Tipo de documento:
Article