Your browser doesn't support javascript.
loading
ABSTRACT
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 µm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2012 Tipo de documento: Article