Your browser doesn't support javascript.
loading
Truncated robust distance for clinical laboratory safety data monitoring and assessment.
Lin, Xiwu; Parks, Daniel; Zhu, Lei; Curtis, Lloyd; Steel, Helen; Rut, Andrew; Mooser, Vincent; Cardon, Lon; Menius, Alan; Lee, Kwan.
Afiliação
  • Lin X; Quantitative Sciences, GlaxoSmithKline Pharmaceuticals R&D, Collegeville, Pennsylvania 19426, USA. xiwu.2.lin@gsk.com
J Biopharm Stat ; 22(6): 1174-92, 2012.
Article em En | MEDLINE | ID: mdl-23075016
Laboratory safety data are routinely collected in clinical studies for safety monitoring and assessment. We have developed a truncated robust multivariate outlier detection method for identifying subjects with clinically relevant abnormal laboratory measurements. The proposed method can be applied to historical clinical data to establish a multivariate decision boundary that can then be used for future clinical trial laboratory safety data monitoring and assessment. Simulations demonstrate that the proposed method has the ability to detect relevant outliers while automatically excluding irrelevant outliers. Two examples from actual clinical studies are used to illustrate the use of this method for identifying clinically relevant outliers.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise Multivariada / Ensaios Clínicos como Assunto / Interpretação Estatística de Dados / Modelos Estatísticos / Monitoramento de Medicamentos / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Análise Multivariada / Ensaios Clínicos como Assunto / Interpretação Estatística de Dados / Modelos Estatísticos / Monitoramento de Medicamentos / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article