Your browser doesn't support javascript.
loading
Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder.
Williamson, E J; Forbes, A; Wolfe, R.
Afiliação
  • Williamson EJ; Department of Epidemiology and Preventive Medicine, Monash University, Australia. ewi@unimelb.edu.au
Stat Med ; 31(30): 4382-400, 2012 Dec 30.
Article em En | MEDLINE | ID: mdl-23086504
We consider the estimation of the causal effect of a binary exposure on a continuous outcome. Confounding and missing data are both likely to occur in practice when observational data are used to estimate this causal effect. In dealing with each of these problems, model misspecification is likely to introduce bias. We present augmented inverse probability weighted (AIPW) estimators that account for both confounding and missing data, with the latter occurring in a single variable only. These estimators have an element of robustness to misspecification of the models used. Our estimators require two models to be specified to deal with confounding and two to deal with missing data. Only one of each of these models needs to be correctly specified. When either the outcome or the exposure of interest is missing, we derive explicit expressions for the AIPW estimator. When a confounder is missing, explicit derivation is complex, so we use a simple algorithm, which can be applied using standard statistical software, to obtain an approximation to the AIPW estimator.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Confusão Epidemiológicos / Probabilidade / Interpretação Estatística de Dados Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fatores de Confusão Epidemiológicos / Probabilidade / Interpretação Estatística de Dados Tipo de estudo: Clinical_trials / Diagnostic_studies / Prognostic_studies Limite: Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2012 Tipo de documento: Article