Your browser doesn't support javascript.
loading
Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins.
Skene-Arnold, Tamara D; Luu, Hue Anh; Uhrig, R Glen; De Wever, Veerle; Nimick, Mhairi; Maynes, Jason; Fong, Andrea; James, Michael N G; Trinkle-Mulcahy, Laura; Moorhead, Greg B; Holmes, Charles F B.
Afiliação
  • Skene-Arnold TD; Department of Biochemistry, 3-37 Medical Sciences Building, School of Translational Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada, T6G 2H7.
Biochem J ; 449(3): 649-59, 2013 Feb 01.
Article em En | MEDLINE | ID: mdl-23088536
ABSTRACT
The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, ß and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Adaptadoras de Transdução de Sinal / Proteínas Reguladoras de Apoptose / Proteína Fosfatase 1 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas Adaptadoras de Transdução de Sinal / Proteínas Reguladoras de Apoptose / Proteína Fosfatase 1 Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article