Your browser doesn't support javascript.
loading
Isolation and characterization of GtMYBP3 and GtMYBP4, orthologues of R2R3-MYB transcription factors that regulate early flavonoid biosynthesis, in gentian flowers.
Nakatsuka, Takashi; Saito, Misa; Yamada, Eri; Fujita, Kohei; Kakizaki, Yuko; Nishihara, Masahiro.
Afiliação
  • Nakatsuka T; Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, Iwate 024-0003, Japan.
J Exp Bot ; 63(18): 6505-17, 2012 Nov.
Article em En | MEDLINE | ID: mdl-23125348
ABSTRACT
Flavonoids are one of the major plant pigments for flower colour. Not only coloured anthocyanins, but also co-pigment flavones or flavonols, accumulate in flowers. To study the regulation of early flavonoid biosynthesis, two R2R3-MYB transcription factors, GtMYBP3 and GtMYBP4, were identified from the petals of Japanese gentian (Gentiana triflora). Phylogenetic analysis showed that these two proteins belong to the subgroup 7 clade (flavonol-specific MYB), which includes Arabidopsis AtMYB12, grapevine VvMYBF1, and tomato SlMYB12. Gt MYBP3 and Gt MYBP4 transcripts were detected specifically in young petals and correlated with the profiles of flavone accumulation. Transient expression assays showed that GtMYBP3 and GtMYBP4 enhanced the promoter activities of early biosynthetic genes, including flavone synthase II (FNSII) and flavonoid 3'-hydroxylase (F3'H), but not the late biosynthetic gene, flavonoid 3',5'-hydroxylase (F3'5'H). GtMYBP3 also enhanced the promoter activity of the chalcone synthase (CHS) gene. In transgenic Arabidopsis, overexpression of Gt MYBP3 and Gt MYBP4 activated the expression of endogenous flavonol biosynthesis genes and led to increased flavonol accumulation in seedlings. In transgenic tobacco petals, overexpression of Gt MYBP3 and Gt MYBP4 caused decreased anthocyanin levels, resulting in pale flower colours. Gt MYBP4-expressing transgenic tobacco flowers also showed increased flavonols. As far as is known, this is the first functional characterization of R2R3-MYB transcription factors regulating early flavonoid biosynthesis in petals.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Fatores de Transcrição / Gentiana Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Fatores de Transcrição / Gentiana Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2012 Tipo de documento: Article