Your browser doesn't support javascript.
loading
Exploring new biological functions of amyloids: bacteria cell agglutination mediated by host protein aggregation.
Torrent, Marc; Pulido, David; Nogués, M Victòria; Boix, Ester.
Afiliação
  • Torrent M; Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain. marc.torrent@uab.cat
PLoS Pathog ; 8(11): e1003005, 2012.
Article em En | MEDLINE | ID: mdl-23133388
ABSTRACT
Antimicrobial proteins and peptides (AMPs) are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala) can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Proteína Catiônica de Eosinófilo / Viabilidade Microbiana / Amiloide / Imunidade Inata / Antibacterianos Limite: Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Proteína Catiônica de Eosinófilo / Viabilidade Microbiana / Amiloide / Imunidade Inata / Antibacterianos Limite: Humans Idioma: En Ano de publicação: 2012 Tipo de documento: Article