Your browser doesn't support javascript.
loading
P2-Na(x)VO2 system as electrodes for batteries and electron-correlated materials.
Guignard, Marie; Didier, Christophe; Darriet, Jacques; Bordet, Pierre; Elkaïm, Erik; Delmas, Claude.
Afiliação
  • Guignard M; CNRS, Université de Bordeaux, ICMCB site de l'ENSCBP-IPB, 87 avenue du Dr. A. Schweitzer, 33608 Pessac Cedex, France.
Nat Mater ; 12(1): 74-80, 2013 Jan.
Article em En | MEDLINE | ID: mdl-23142842
ABSTRACT
Layered oxides are the subject of intense studies either for their properties as electrode materials for high-energy batteries or for their original physical properties due to the strong electronic correlations resulting from their unique structure. Here we present the detailed phase diagram of the layered P2-Na(x)VO(2) system determined from electrochemical intercalation/deintercalation in sodium batteries and in situ X-ray diffraction experiments. It shows that four main single-phase domains exist within the 0.5≤x≤0.9 range. During the sodium deintercalation (intercalation), they differ from one another in the sodium/vacancy ordering between the VO(2) slabs, which leads to commensurable or incommensurable superstructures. The electrochemical curve reveals that three peculiar compositions exhibit special structures for x = 1/2, 5/8 and 2/3. The detailed structural characterization of the P2-Na(1/2)VO(2) phase shows that the Na(+) ions are perfectly ordered to minimize Na(+)/Na(+) electrostatic repulsions. Within the VO(2) layers, the vanadium ions form pseudo-trimers with very short V-V distances (two at 2.581 Å and one at 2.687 Å). This original distribution leads to a peculiar magnetic behaviour with a low magnetic susceptibility and an unexpected low Curie constant. This phase also presents a first-order structural transition above room temperature accompanied by magnetic and electronic transitions. This work opens up a new research domain in the field of strongly electron-correlated materials. From the electrochemical point of view this system may be at the origin of an entire material family optimized by cationic substitutions.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article