Your browser doesn't support javascript.
loading
Finite element analysis of thermal and acoustic processes during laser tattoo removal.
Humphries, Alexander; Lister, Tom S; Wright, Philip A; Hughes, Mike P.
Afiliação
  • Humphries A; Centre for Biomedical Engineering, School of Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom. a.humphries@surrey.ac.uk
Lasers Surg Med ; 45(2): 108-15, 2013 Feb.
Article em En | MEDLINE | ID: mdl-23280416
ABSTRACT
BACKGROUND AND

OBJECTIVE:

Q-switched laser therapy is commonly used for the removal of tattoos. However, despite ever increasing demand for this intervention, a better understanding of the mechanisms that result in pigment reduction is required in order to optimise outcomes and reduce the number of treatment episodes. STUDY

DESIGN:

A finite element analysis computer simulation was developed to model the fragmentation response of ink granules during irradiation of a professional black tattoo using a Q-switched NdYAG laser. Thermal and acoustic mechanisms were considered, allowing the optimal laser settings to be predicted throughout the course of treatment. Changes in the thermal properties of the ink during heating were taken into account to improve the reliability of the results obtained.

RESULTS:

The simulated results are in close agreement with clinical observations. Thermal fragmentation was shown to be the dominant mechanism in pigment reduction when using a 6 nanoseconds pulse at 1,064 nm. In order to provide maximum clearance whilst maintaining acceptable levels of tissue thermal damage, later treatments were shown to benefit from higher fluence levels than initial treatments. Larger spot diameters were also preferable throughout the course of treatment.

CONCLUSIONS:

The results from the simulation build upon previous work carried out in the field, applying ink thermal coefficients which vary with temperature for the first time. These results compliment clinical knowledge, suggesting that a proactive increase in fluence during a course of treatments is likely to improve the response to laser therapy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tatuagem / Termodinâmica / Acústica / Análise de Elementos Finitos / Lasers de Estado Sólido / Tinta / Modelos Teóricos Tipo de estudo: Evaluation_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tatuagem / Termodinâmica / Acústica / Análise de Elementos Finitos / Lasers de Estado Sólido / Tinta / Modelos Teóricos Tipo de estudo: Evaluation_studies / Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article