Optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of HIV capsid assembly inhibitors 1: addressing configurational instability through scaffold modification.
Bioorg Med Chem Lett
; 23(11): 3396-400, 2013 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-23583513
The optimization of a 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly that possess a labile stereocenter at C3 is described. Quaternization of the C3 position of compound 1 in order to prevent racemization gave compound 2, which was inactive in our capsid disassembly assay. A likely explanation for this finding was revealed by in silico analysis predicting a dramatic increase in energy of the bioactive conformation upon quaternization of the C3 position. Replacement of the C3 of the diazepine ring with a nitrogen atom to give the 1,5-dihydro-benzo[f][1,3,5]triazepine-2,4-dione analog 4 was well tolerated. Introduction of a rigid spirocyclic system at the C3 position gave configurationally stable 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione analog 5, which was able to access the bioactive conformation without a severe energetic penalty and inhibit capsid assembly. Preliminary structure-activity relationships (SAR) and X-ray crystallographic data show that knowledge from the 1,5-dihydrobenzo[b][1,4]diazepine-2,4-dione series of inhibitors of HIV-1 capsid assembly can be transferred to these new scaffolds.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Benzodiazepinas
/
HIV-1
/
Fármacos Anti-HIV
/
Proteínas do Capsídeo
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2013
Tipo de documento:
Article