Evolutionary capacitance and control of protein stability in protein-protein interaction networks.
PLoS Comput Biol
; 9(4): e1003023, 2013 Apr.
Article
em En
| MEDLINE
| ID: mdl-23592969
In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for ~2-4 k(B)T of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space which correspond to less stable proteins. In the interaction network of baker's yeast, we find that statistically proteins that receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Proteínas Fúngicas
/
Proteínas
/
Evolução Molecular
/
Biologia Computacional
/
Mapeamento de Interação de Proteínas
/
Mapas de Interação de Proteínas
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2013
Tipo de documento:
Article