Your browser doesn't support javascript.
loading
Hsp70 targets a cytoplasmic quality control substrate to the San1p ubiquitin ligase.
Guerriero, Christopher J; Weiberth, Kurt F; Brodsky, Jeffrey L.
Afiliação
  • Guerriero CJ; Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
J Biol Chem ; 288(25): 18506-20, 2013 Jun 21.
Article em En | MEDLINE | ID: mdl-23653356
ABSTRACT
Accumulation of misfolded proteins in cellular compartments can result in stress-induced cell death. In the endoplasmic reticulum (ER), ER-associated degradation clears aberrant proteins from the secretory pathway. In the cytoplasm and nucleus, this job is left to the cytoplasmic quality control (CytoQC) machinery. Both processes utilize chaperones and the ubiquitin-proteasome system to aid in protein elimination. Previous studies in yeast have drawn comparisons between these processes using data from structurally and topologically different substrates. We sought to draw a direct comparison between ERAD and CytoQC by studying the elimination of a single misfolded domain that, depending on its residence, is disposed by either of these pathways. The truncated, second nucleotide binding domain (NBD2*) from a yeast ERAD substrate, Ste6p*, resides at the cytoplasmic face of the ER. We show that a soluble form of NBD2* is cytoplasmic and unlike wild-type NBD2 is targeted for proteasome-mediated degradation. In contrast to Ste6p*, which employs the ER-localized Doa10p ubiquitin ligase, NBD2* is ubiquitinated by a nuclear E3 ligase San1p, a factor that is also required for its degradation. Although the yeast cytoplasmic Hsp70 chaperone, Ssa1p, has been thought to facilitate the nuclear import or to maintain the solubility of most CytoQC substrates, we discovered that Ssa1p facilitates the interaction between San1p and NBD2*, demonstrating that chaperones can aid in substrate recognition and San1p-dependent protein degradation. These results emphasize the diverse action of molecular chaperones during CytoQC.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Choque Térmico HSP70 / Citoplasma / Proteínas de Saccharomyces cerevisiae / Ubiquitina-Proteína Ligases Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas de Choque Térmico HSP70 / Citoplasma / Proteínas de Saccharomyces cerevisiae / Ubiquitina-Proteína Ligases Idioma: En Ano de publicação: 2013 Tipo de documento: Article