Your browser doesn't support javascript.
loading
Comparison between x-ray scattering and velocity-interferometry measurements from shocked liquid deuterium.
Falk, K; Regan, S P; Vorberger, J; Crowley, B J B; Glenzer, S H; Hu, S X; Murphy, C D; Radha, P B; Jephcoat, A P; Wark, J S; Gericke, D O; Gregori, G.
Afiliação
  • Falk K; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU, United Kingdom.
Article em En | MEDLINE | ID: mdl-23679534
The equation of state of light elements is essential to understand the structure of Jovian planets and inertial confinement fusion research. The Omega laser was used to drive a planar shock wave in the cryogenically cooled deuterium, creating warm dense matter conditions. X-ray scattering was used to determine the spectrum near the boundary of the collective and noncollective scattering regimes using a narrow band x-ray source in backscattering geometry. Our scattering spectra are thus sensitive to the individual electron motion as well as the collective plasma behavior and provide a measurement of the electron density, temperature, and ionization state. Our data are consistent with velocity-interferometry measurements previously taken on the same shocked deuterium conditions and presented by K. Falk et al. [High Energy Density Phys. 8, 76 (2012)]. This work presents a comparison of the two diagnostic systems and offers a detailed discussion of challenges encountered.
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article
Buscar no Google
Base de dados: MEDLINE Idioma: En Ano de publicação: 2013 Tipo de documento: Article