Your browser doesn't support javascript.
loading
TAK1 inhibitor 5Z-7-oxozeaenol sensitizes neuroblastoma to chemotherapy.
Fan, Yihui; Cheng, Jin; Vasudevan, Sanjeev A; Patel, Roma H; Liang, Li; Xu, Xin; Zhao, Yanling; Jia, Wei; Lu, Fengmin; Zhang, Hong; Nuchtern, Jed G; Kim, Eugene S; Yang, Jianhua.
Afiliação
  • Fan Y; Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
Apoptosis ; 18(10): 1224-34, 2013 Oct.
Article em En | MEDLINE | ID: mdl-23700229
ABSTRACT
Treatment failure in high risk neuroblastoma is largely due to development of chemoresistance. NF-κB activation is one of the resistance mechanisms for cancer cells to escape from chemotherapy-induced cell-death. TAK1 is an essential component in genotoxic stresses-induced NF-κB activation; however, the role of TAK1 in the development of chemoresistance in neuroblastoma remains unknown. Using a panel of neuroblastoma cell lines, we found that TAK1 inhibitor 5Z-7-oxozeaenol significantly augmented the cytotoxic effects of doxorubicin (Dox) and etoposide (VP-16) on neuroblastoma cell lines. TAK1 inhibition also enhanced the inhibitory effect of Dox and VP-16 on anchorage-independent growth. Treatment of neuroblastoma cells with 5Z-7-oxozeaenol blocked Dox- and VP16-induced NF-κB activation and enhanced Dox- and VP16-induced apoptosis. Moreover, 5Z-7-oxozeaenol was able to overcome the established chemoresistance in LA-N-6 neuroblastoma cells. Using an orthotopic neuroblastoma mouse model, we found that 5Z-7-oxozeaenol significantly enhanced chemotherapeutic efficacy in vivo. Together, our results provide a proof-of-concept that TAK1 inhibition significantly increases the sensitivity of neuroblastoma cells to chemotherapy-induced cell-death and can serve as an effective adjunct to current chemotherapeutic regimens for high risk diseases.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zearalenona / MAP Quinase Quinase Quinases / Neuroblastoma Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zearalenona / MAP Quinase Quinase Quinases / Neuroblastoma Limite: Animals / Female / Humans Idioma: En Ano de publicação: 2013 Tipo de documento: Article